Regulation of microsomal stearoyl-coenzyme A desaturase. Purification of a non-substrate-binding protein that stimulates activity.
نویسندگان
چکیده
Crude cytosolic fraction from rat liver was examined for proteins that may be involved in regulation of microsomal stearoyl-CoA desaturase activity. Gel filtration revealed the presence of several components that either stimulate or inhibit this enzyme. In addition, other components bind the acyl-CoA substrate, thus affecting observed activities in vitro. A protein that stimulates stearoyl-CoA desaturase but does not bind substrate was purified approx. 1100-fold. The purified protein had no visible absorption spectrum and an approximate mol.wt. of 26500. Maximal stimulation of desaturase activity occurred with less than 2 micrometer purified protein. The protein was heat-labile and exhibited neither catalase nor glutathione peroxidase activity. Addition of the cytosolic protein produced no effect on the desaturase reaction stoicheiometry; the proportions O2 consumed/NADH oxidized/stearoyl-CoA desaturated remained 1:1:1. Because the Km' for stearoyl-CoA was also unchanged by addition of the cytosolic protein, no change in substrate affinity was suggested. Furthermore addition of the cytosolic protein also produced no effect on desaturase inhibition by oleoyl-CoA, which suggested that the protein does not simply relieve apparent product inhibition. These results indicate that, in analogy to other cytosolic proteins that stimulate microsomal oxidase activities, the protein may have a regulatory function, perhaps related to activity modulation via organization of the multienzymic desaturase in the membrane.
منابع مشابه
A role for skeletal muscle stearoyl-CoA desaturase 1 in control of thermogenesis.
An enhanced metabolic efficiency for accelerating the recovery of fat mass (or catch-up fat) is a characteristic feature of body weight regulation after weight loss or growth retardation and is the outcome of an "adipose-specific" suppression of thermogenesis, i.e., a feedback control system in which signals from the depleted adipose tissue fat stores exert a suppressive effect on thermogenesis...
متن کاملDegradation of stearoyl-coenzyme A desaturase: endoproteolytic cleavage by an integral membrane protease.
Stearoyl-coenzyme A desaturase (SCD) is a key regulator of membrane fluidity, turns over rapidly, and represents a prototype for selective degradation of resident proteins of the endoplasmic reticulum. Using detergent-solubilized, desaturase-induced rat liver microsomes we have characterized a protease that degrades SCD. Degradation of SCD in vitro is highly selective, has a half-life of 3-4 h,...
متن کاملAn Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملInvestigation of (Stearoyl-CoA Desaturase 1) SCD1 Gene Polymorphism in Khuzestan Buffalo Population Using PCR-RFLPMethod
Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). A number of studies support the hypothesis that SCD gene regulation and polymorphism may affect fatty acid composition and fat quality in meat and milk. Single nucleotide polymorphisms in the coding region of the bovine stearoyl-CoA desaturase gene have been predicted to result in ...
متن کاملPurification and properties of rat liver microsomal stearyl coenzyme A desaturase.
The terminal enzyme of the NADH-dependent stearyl coenzyme A desaturase system has been isolated from rat liver microsomes. This desaturase is a single polypeptide of 53,000 daltons containing 62% nonpolar amino-acid residues and one atom of non-heme iron. The purified protein forms high molecular weight aggregates that can be dispersed by detergent procedures. Desaturase activity requires NADH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 183 2 شماره
صفحات -
تاریخ انتشار 1979